Mobile Malware Evolution and the Android Security Model

Roland Schmitz
Hochschule der Medien Stuttgart
schmitz@hdm-stuttgart.de

Where do I come from?

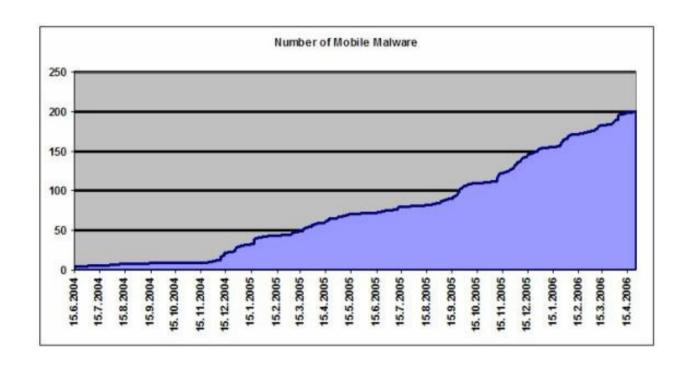
Roland Schmitz, Mobile Malware Evolution and the Android Security Model, droidcon 09, 4.11.09

Study Programs in the Computer Science and Media Department

- Computer Science and Media (B. Sc.)
 - 6 semester course
 - 10 professors
 - Provide a solid education in computer science with applications to media technology
- Mobile Media (B. Sc.)
 - newly established 7 semester course
 - 3 professors (yet to be called), close cooperation with computer science and media
 - Provide an interdisciplinary education in the field of mobile media, with a strong technological background
- Computer Science and Media (M. Sc.)
 - Well established 4 semester master course
 - Qualify students for project leader or management positions
- More info: www.mi.hdm-stuttgart.de

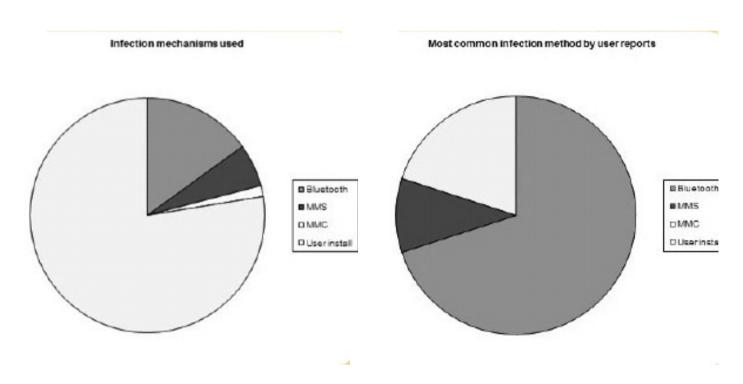
Agenda

- Mobile Malware
 - Motivation
 - Facts and Figures
 - Some History
 - The Android Browser Bug
- Android Security Model
 - Overview
 - Key Features and Pitfalls
 - Evaluation
- The Future?


Why Mobile Malware?

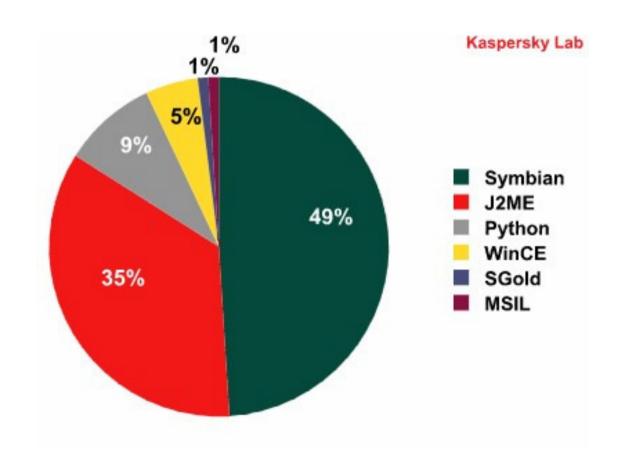
- Growing complexity of smartphones makes them more vulnerable than in the past
- Often users are not aware of any danger
- Sensitive data stored on Smartphones
- "Always-On" makes spreading of malware easier
- User tracking possibility, e.g by using GPS coordinates
- Financial Motivation
 - Mobile Banking
 - Mobile Payment
 - Premium-Service Numbers

Growing Number of Reported Mobile Malware (until 2006)



Source: F-Secure.com

Mobile Malware Infection Mechanisms



- User install and bluetooth are by far the most important infection mechanisms
- Infection via bluetooth shows same spreading pattern as biological viruses

Affected Platforms (by 6/2009)

Mobile Malware: The Beginnings

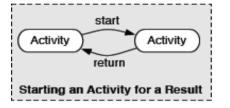
- June 2004: Worm.SymbOS.Cabir.A
 - First reported mobile malware
 - "Proof of concept"
 - Spreads via bluetooth, user has to download and execute code
- July 2004: Virus.WinCE.Duts
 - First virus written for Windows Mobile
 - Infects exe-files
 - Needs user approval for infection
- November 2004: Trojan.SymbOS.Skuller
 - Replaces program icons with skulls
 - Infection via "warzed installers"
 - Uses security hole in Symbian

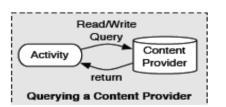
Mobile Malware: Getting serious

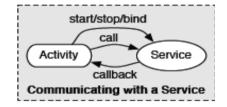
- March 2006: Trojan-Spy.SymbOS.Flexispy
 - Collects information about calls and SMS
 - First example of mobile spyware
- May 2007: SymbOS. Viver. A
 - Sends MMS to premium service numbers
 - First example of mobile malware with explicit financial background
- January 2008:Trojan.iPhone.A
 - First reported malware for iPhone
 - Replaces legitimate applications
- October 2008: First Android Phones commercially available
 - The same month, a first vulnerability is reported...

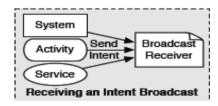
The Android Browser Bug

- Identified and exploited by Charles Miller, Mark Daniel and Jake Honoroff of Independent Security Evaluators in October 2008
- If a user visits a malicious site, the attacker can run any code with the privileges of the web browser application.
- Thus, the impact of the attack is limited to data the browser has access to:
 - Cookies
 - Saved passwords
 - Information put into web applications

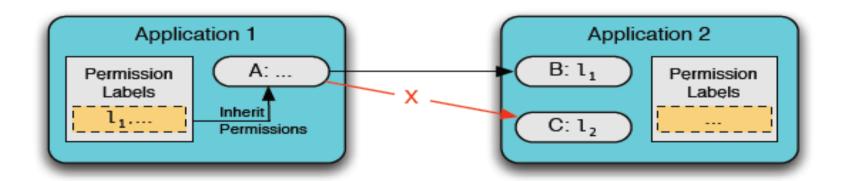

Android Component Model


- Each application runs as its own UNIX uid
- Sharing can occur through application-level interactions


- Interactions are based on components. Different component types


are:

- Activity
- Service
- Content Provider
- Broadcast Receiver


- Target components may be in the same or different applications

Android Security Model Overview

- Android focuses on Inter Component Communication (ICC)
- The Android manifest file allows developers to define an access control policy for access to components
 - Each component can be assigned an access permission label
 - Each application requests a list of permission labels (fixed at install)
- Android's security model boils down to the following picture:

Android Security Key Features

- Isolation
 - Each application runs as its own uid
 - uid sharing only if developer's signature keys are the same
- Code Signing
 - Each application must be digitally signed
 - Self-signed certificates are possible
- Mandatory Access Control
 - Developers may define access control rules to their components
 - Sensitive system resources are protected by permissions
- Permissions are statically assigned at install time
 - Normal permissions are assigned per default
 - Dangerous permissions are granted by user
 - Signature permissions are granted only to applications signed by the same developer key

Android Security Evaluation

- Isolation by different uids per application is a major step towards limiting potential damages
- Basic MAC model is easy to understand
- Network and hardware resources are protected by permissions
 - Applications must request these permissions in their manifest
 - Makes it easier to evaluate an application's security
- Non-trivial security decisions are left to the user
- Possibility to delegate actions via Pending Intents may cause problems ("Confused Deputy Problem")
- Code-Signing might lead to a false feeling of trust at the user's side

The Future?

- Android will become a major target for malware authors
- Mobile Anti-Virus Solutions are already available
- Android security model seems to be better designed than competing operating systems
- Developers must know and implement the security model at code level
 currently focus is on platform version updates and features.
- Users need to be informed about security risks and the possible impact of granting access permissions
- If possible, users should be relieved from having to take critical security decisions

Thanks for your attention!

Do you have any questions?

